Variable Metric Forward-Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function
نویسندگان
چکیده
We consider the minimization of a function G defined on R , which is the sum of a (non necessarily convex) differentiable function and a (non necessarily differentiable) convex function. Moreover, we assume that G satisfies the KurdykaLojasiewicz property. Such a problem can be solved with the Forward-Backward algorithm. However, the latter algorithm may suffer from slow convergence. We propose an acceleration strategy based on the use of variable metrics and of the Majorize-Minimize principle. We give conditions under which the sequence generated by the resulting Variable Metric Forward-Backward algorithm converges to a critical point of G. Numerical results illustrate the performance of the proposed algorithm in an image reconstruction application.
منابع مشابه
A block coordinate variable metric forward-backward algorithm
A number of recent works have emphasized the prominent role played by the KurdykaLojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of a non necessarily convex differentiable function and a non necessaril...
متن کاملA Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization
We propose a multi-step inertial Forward–Backward splitting algorithm for minimizing the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the algorithm with the help of the Kurdyka-Łojasiewicz property. Then, when the non-smooth part is also partl...
متن کاملA Forward-Backward Projection Algorithm for Approximating of the Zero of the Sum of Two Operators
In this paper, a forward-backward projection algorithm is considered for finding zero points of the sum of two operators in Hilbert spaces. The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly monotone operator and a maximal monotone operator. We apply the result for solving the variational inequality problem, fixed po...
متن کاملW-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کاملA forward-backward-forward differential equation and its asymptotic properties
In this paper, we approach the problem of finding the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space via an implicit forward-backward-forward dynamical system with nonconstant relaxation parameters and stepsizes of the resolvents. Besides proving existence and uniqueness of strong global solutions for the differential equati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 162 شماره
صفحات -
تاریخ انتشار 2014